Методики обогащения. Обогащение по крупности и форме. Основная характеристика методов обогащения

Для определения глистной инвазии, помимо соскоба и простого анализа кала, используют методы обогащения, основанные на концентрации яйцеглистов в растворах. Анализ кала методом обогащения в 10-15 раз лучше других методов справляется с поиском яиц гельминтов в фекалиях. Особенно это важно для ранней диагностики, потому что на начальной стадии гельминтоз лечить значительно легче. В профилактических целях сдавать кал методом обогащения рекомендуется всем, кто находится в группе риска.

Что представляет собой метод?

Виды анализа и методика проведения

Метод обогащения Калантарян

Другие методы

Метод Бермана по обогащению кала при сдаче анализа на гельминты

Помогает выявить в кале личинки угрицы. Для эффективной диагностики лучше использовать еще теплый кал. В исследовании используется металлическая сетка, с мелкими делениями, помещенная в установленную на подставке стеклянную воронку. На дне воронки размещается резиновая трубочка с зажимом. В сетку помещают 5 грамм испражнений, поднимают и в воронку заливают теплую воду, пока низ сетки не погрузится в воду. Яйца гельминтов из-за термоактивности, сползаются к теплой воде и скапливаются на дне воронки. Спустя 4 часа, выпускают жидкость и помещают в центрифугу на 3 минуты. Оставшийся осадок подлежит микроскопическому изучению.

Метод обогащения по Красильникову

Для исследования применяют 1% раствор порошка для стирки «Лотос», в котором растворены каловые массы. При размешивании должна образоваться суспензия. 30 минут суспензия отстаивается, а затем помещается в центрифугу на 5 минут. В центрифуге яйца гельминтов очищаются от кала и выпадают в осадок, который исследуется под микроскопом.

Подготовка

  • За 2 дня до исследования не проводить очистительные клизмы, колоноскопию либо рентген желудка.
  • Накануне не употреблять жирную, копченую и жареную пищу.
  • В течение 3-х дней перед исследованием, при отсутствии противопоказаний, пропить желчегонное средство.
  • Вечером перед анализом не употреблять продукты, изменяющие цвет фекалий.
  • По возможности не принимать антибиотики, препараты железа и сорбенты.

Правила сбора биоматериала на анализ:

  • Перед сбором провести тщательное мытье внешних половых органов.
  • Заранее помочиться.
  • Сбор каловых масс осуществлять в специальный контейнер.
  • Пробы кала взять из 5-ти разных мест, в количестве 3-5 мл.
  • Следить, чтобы в анализ не попала урина и вода.
  • Образец для исследования должен попасть на диагностику в течение дня сбора.

При виде товарных ценных минералов справедливо возникает вопрос о том, каким образом из первичной руды или ископаемого может получиться столь привлекательное ювелирное изделие. Особенно с учетом того, что переработка породы как таковая представляет собой если не один из финальных, то как минимум предшествующий заключительному этапу процесс облагораживания. Ответом же на вопрос будет обогащение в ходе которого происходит базовая обработка породы, предусматривающая отделение ценного минерала от пустых сред.

Общая технология обогащения

Переработка ценных ископаемых осуществляется на специальных предприятиях по обогащению. Процесс предусматривает выполнение нескольких операций, среди которых подготовка, непосредственное расщепление и разделение породы с примесями. В ходе обогащения получают разные минералы, в том числе графит, асбест, вольфрам, рудные материалы и т. д. Не обязательно это должны быть ценные породы - есть немало фабрик, выполняющих переработку сырья, которое в дальнейшем используется в строительстве. Так или иначе, основы обогащения полезных ископаемых базируются на анализе свойств минералов, которые обуславливают и принципы разделения. К слову, необходимость отсечения разных структур возникает не только с целью получения одного чистого минерала. Распространена практика, когда из одной структуры выводится несколько ценных пород.

Дробление породы

На этом этапе производится измельчение материала на отдельные частицы. В процессе дробления задействуются механические силы, с помощью которых преодолеваются внутренние механизмы сцепления.

В результате порода делится на мелкие твердые частицы, носящие однородный характер структуры. При этом стоит различать непосредственное дробление и технику измельчения. В первом случае минеральное сырье подвергается менее глубокому разделению структуры, в ходе которого формируются частицы фракцией более 5 мм. В свою очередь измельчение обеспечивает образование элементов диаметром менее 5 мм, хотя и этот показатель зависит от того, с какой породой приходится иметь дело. В обоих случаях ставится задача максимального расщепления зерен полезного вещества так, чтобы освобождался чистый компонент без микста, то есть пустой породы, примесей и т. д.

Процесс грохочения

После завершения процесса дробления заготовленное сырье подвергается другому технологическому воздействию, которое может представлять собой и просеивание, и выветривание. Грохочение в сущности является способом классификации полученных зерен по характеристике крупности. Традиционный способ реализации данного этапа предусматривает использование решета и сита, обеспеченных возможностью калибрования ячеек. В процессе грохочения отделяются надрешетчатые и подрешетчатые частицы. В некотором роде обогащение полезных ископаемых начинается уже на этой стадии, поскольку часть примесей и миксты отделяются. Мелкая фракция размером менее 1 мм отсеивается и с помощью воздушной среды - выветриванием. Масса, напоминающая мелкофракционный песок, поднимается искусственными воздушными потоками, после чего оседает.

В дальнейшем частицы, которые оседают медленнее, отделяются от совсем маленьких пылевых элементов, задерживающихся в воздухе. Для дальнейшего сбора производных такого грохочения используют воду.

Обогатительные процессы

Процесс обогащения ставит целью выделение из исходного сырья частиц полезного ископаемого. В ходе выполнения таких процедур выделяется несколько групп элементов - полезный концентрат, отвальные хвосты и другие продукты. Принцип разделения этих частиц основывается на различиях между свойствами полезных минералов и пустой породы. Такими свойствами могут выступать следующие: плотность, смачиваемость, магнитная восприимчивость, типоразмер, электропроводность, форма и т. д. Так, процессы обогащения, использующие разницу в плотности, задействуют гравитационные методы разделения. Такой подход используется при рудного и нерудного сырья. Весьма распространено и обогащение на основе характеристик смачиваемости компонентов. В данном случае применяется флотационный метод, особенностью которого является возможность разделения тонких зерен.

Также используется магнитное обогащение полезных ископаемых, которое позволяет выделять железистые примеси из тальковых и графитовых сред, а также очищать вольфрамовые, титановые, железные и другие руды. Базируется эта техника на разнице в воздействии магнитного поля на частицы ископаемых. В качестве оборудования задействуются специальные сепараторы, которые также используют для восстановления магнетитовых суспензий.

Заключительные этапы обогащения

К основным процессам этого этапа стоит отнести обезвоживание, сгущение пульпы и сушку полученных частиц. Подбор оборудования для обезвоживания осуществляется на основе химико-физических характеристик минерала. Как правило, данная процедура выполняется в несколько сеансов. При этом необходимость в ее выполнении возникает не всегда. Например, если в процессе обогащения использовалась электрическая сепарация, то обезвоживание не требуется. Помимо подготовки продукта обогащения к дальнейшим процессам переработки, должна быть предусмотрена и соответствующая инфраструктура для обращения с частицами минерала. В частности, на фабрике организуется соответствующее производственное обслуживание. Вводятся внутрицеховые транспортные средства, организуется снабжение водой, теплом и электроэнергией.

Оборудование для обогащения

На этапах измельчения и дробления задействуются специальные установки. Это механические агрегаты, которые с помощью различных приводных сил оказывают разрушающее воздействие на породу. Далее в процессе грохочения используют решето и сито, в которых предусматривается возможность калибрования отверстий. Также для просеивания применяют более сложные машины, которые называются грохотами. Непосредственно обогащение выполняют электрические, гравитационные и магнитные сепараторы, которые используются в соответствии с конкретным принципом разделения структуры. После этого для обезвоживания используют технологии дренирования, в реализации которых могут применяться те же грохоты, элеваторы, центрифуги и аппараты для фильтрации. Заключительный этап, как правило, предполагает использование средств термической обработки и сушки.

Отходы процесса обогащения

В результате процесса обогащения образуется несколько категорий продуктов, которые можно разделить на два вида - полезный концентрат и отходы. Причем ценное вещество вовсе не обязательно должно представлять одну и ту же породу. Также нельзя сказать, что отходы представляют собой ненужный материал. В таких продуктах может содержаться ценный концентрат, но в минимальных объемах. При этом дальнейшее обогащение полезных ископаемых, которые находятся в структуре отходов, зачастую не оправдывает себя технологически и финансово, поэтому вторичные процессы такой переработки редко выполняются.

Оптимальное обогащение

В зависимости от условий проведения обогащения, характеристик исходного материала и самого метода может различаться качество конечного продукта. Чем выше содержание в нем ценного компонента и меньше примесей, тем лучше. Идеальное обогащение руды, к примеру, предусматривает полное отсутствие отходов в продукте. Это значит, что в процессе обогащения смеси, полученной дроблением и грохочением, из общей массы полностью были исключены частицы сора от пустых пород. Однако достичь такого эффекта удается далеко не всегда.

Частичное обогащение полезных ископаемых

Под частичным обогащением понимается разделение класса крупности ископаемого или же отсечение легко выделяемой части примесей из продукта. То есть данная процедура не ставит целью полное очищение продукта от примесей и отходов, а лишь повышает ценность исходного материала путем увеличения концентрации полезных частиц. Такая обработка минерального сырья может использоваться, к примеру, в целях понижения зольности угля. В процессе обогащения выделяется крупный класс элементов при дальнейшем смешивании концентрата необогащенного отсева с мелкой фракцией.

Проблема потерь ценной породы при обогащении

Как ненужные примеси остаются в массе полезного концентрата, так и ценная порода может выводиться вместе с отходами. Для учета таких потерь используются специальные средства, позволяющие рассчитать допустимый уровень оных для каждого из технологических процессов. То есть для всех методов отделения разрабатываются индивидуальные нормы допустимых потерь. Допустимый процент учитывается в балансе обрабатываемых продуктов с целью покрытия расхождений в расчете коэффициента влаги и механических потерь. Особенно такой учет важен, если планируется обогащение руды, в процессе которого используется глубокое дробление. Соответственно, повышается и риск потерь ценного концентрата. И все же в большинстве случаев утрата полезной породы происходит из-за нарушений в технологическом процессе.

Заключение

За последнее время технологии обогащения ценных пород сделали заметный шаг в своем развитии. Совершенствуются и отдельные процессы переработки, и общие схемы реализации отделения. Одним из перспективных направлений дальнейшего продвижения является использование комбинированных схем обработки, которые повышают качественные характеристики концентратов. В частности, комбинированию подвергаются магнитные сепараторы, в результате чего оптимизируется процесс обогащения. К новым методикам этого типа можно отнести магнитогидродинамическую и магнитогидростатическую сепарацию. При этом отмечается и общая тенденция ухудшения рудных пород, что не может не сказываться на качестве получаемого продукта. Бороться с повышением уровня примесей можно активным применением частичного обогащения, но в общем итоге увеличение сеансов переработки делает технологию неэффективной.

К специальным методам обогащения относятся процессы, основанные на использовании разницы в цвете и блеске, в твердости, в интенсивности различных видов физических излучений, в способности минералов растрескиваться при нагревании.

Наиболее широкое распространение среди специальных методов получили методы сортировки или рудоразборки, которые основаны на различиях излучения в оптической области спектра (оптические методы) , в области радиометрического излучения (радиометрическая сортировка).

Эти процессы применяются, как правило, при предварительной классификации руды с целью выделения продукта с отвальным содержанием ценного компонента, при выходе которого более 20…25% использование этих процессов становятся экономически целесообразным. Они отличаются высокой производительностью, эффективностью, низкими расходами электроэнергии, воды, топлива и экологичностью.

Сортировка по цвету и отражательной способности применяется для выделения алмазов, золота, драгоценных камней, урановых минералов.

Ручная сортировка в настоящее время применяется в очень ограниченных масштабах, т.к. отличается большой трудоемкостью. Она используется на предприятиях небольшой производительности и достаточно высокой стоимости продуктов обогащения (алмазы, драгоценные камни). Сортировку руды производят непосредственно в забое (в шахте) или уже на поверхности на специальных рудоразборных конвейерах при крупности материала от 10 до 300 мм. Эффективность такой сортировки зависит от различия в цвете кусков породы и ценных минералов. Примером использования процесса ручной сортировки могут быть крупнокристаллические сподуменовые и берилловые руды, в которых сподумен (литиевый минерал) и бериллийсодержащие минералы (изумруд, хризоберилл) сильно отличаются от минералов вмещающих пород не только по цвету и блеску, но и по форме.

Механическая сортировка по цвету, блеску и отражательной способности используется в фотометрической и люминесцентной сепарации, которые являются более производительными и эффективными, нежели ручная сортировка.

При фотометрической сортировке с применением фотоэлемента движущиеся по ленточному конвейеру куски руды освещаются источником света. В зависимости от интенсивности отраженного света, попадающего на фотоэлемент, возникает электрический ток, который затем усиливается и приводит в действие механизм отклоняющего шибера, который сбрасывает куски в отсек для концентрата или в отсек для хвостов (рис. 141).

Рис.141. Схема фотолюминисцентного сепаратор

1 – питатель; 2 –светонепроницаемый кожух сортирующего узла; 3 – источник ультрафиолетового излучения; 4 –линза; 5 – светофильтры; 6 –фотодатчики; 7 –светофильтры; 8 –электромагнитные шиберы; 9 - фотометр

Фотометрический метод применяется при предварительном обогащении, например, золото-кварцевых руд, бериллийсодеражщих руд.

Люминесцентный метод основан на способности некоторых минералов люминесцировать под влиянием внешних воздействии (ультрафиолетовых и рентгеновских лучей), которые возбуждают в минералах сильную люминесценцию. Такие сепараторы используются для обогащения алмазосодержащих руд. В рентгено-люминесцентных сепараторах используется свечение алмазов под действием рентгеновских лучей. При прохождении алмаза через зону просвечивания в фотоумножителе появляется импульс тока, который заставляет срабатывать механизм, перемещающий приемную воронку под желоб для алмазов. При прохождении через зону просвечивания минералов вмещающих пород такого импульса не появляется и минералы уходят в хвосты.

Современные высокоскоростные оптические сепараторы способны различить тысячи оттенков различных цветов и имеют производительность от 12 т/ч при крупности питания 2…35 мм до 450 т/ч при крупности исходной руды 400 мм. Эти сепараторы способны производить обогащение руды крупностью до 1 мм.

Наиболее широкое промышленное применение получили методы, использующие природную или наведенную радиактивность. Интенсивность гамма-излучений и бета-излучений используется при обогащении радиоактивных руд, содержащих уран и торий. Основанная на этих излучениях радиометрическая сортировка осуществляется в сепараторах, которые состоят из следующих конструктивных узлов: транспортирующего устройства, радиометра, разделяющего механизма и питателя. Питателем руда подается на транспортирующее устройство, который подает руду к разделяющему механизму. Радиометр регистрирует гамма- излучение при движении руды через сепаратор и управляет механизмом, разделяющим руду на продукты обогащения. По типу транспортирующих устройств сепараторы разделяются на ленточные, вибрационные, ковшовые и карусельные. Наиболее простыми являются ленточные сепараторы с электромеханическим разделяющим механизмом шиберного типа (рис. 142). Многоканальные ленточные сепараторы имеют несколько каналов с датчиками и разделяющими механизмами и могут одновременно производить обогащение нескольких потоков руды.

Рис. 142. Схема ленточного радиометрического сепаратора с электромеханическим разделителем

1 – ленточный конвейер; 2 – датчик радиометра; 3 –шибер; 4 – электромагнит; 5 – экран; 6 –радиометр

Радиометрическая сортировка бывает трех видов: кускова, порционная и поточная. При кусковой и порционной сортировке материал разделяется на куски или порции, которые раздельно подаются в зону разделения активности. При поточной сортировке через зону измерения непрерывным потоком проходит вся рудная масса, а за условную порцию принимается то количество руды, которое находится в данный момент под датчиком. Такая сортировка применяется при обогащении бедных руд. При кусковой сортировке осуществляется классификация по зкой школе с отмывкой глины и шламов.

Наглядным примером порционной сортировки являются радиометрические контрольные станции, в которых интенсивность излучения проводится в емкостях – вагонетках, скипах, думпкарах и автомашинах. Эти большеобъемные емкости помещаются между датчиками радиометра, регистрирующего интенсивность ее гамма-излучения и в соответствии с установленным эталонным графиком определяется содержание урана в порции руды с последующим направлением ее в цикл обогащения богатой рядовой или бедной руды (рис. 143)

Рис. 143. Технологическая схема радиометрическогообогащения

урановой руды

Эффективность радиометрического обогащения определяется прежде всего контрастностью руды – распределением урана между отдельными кусками руды. Если контрастность отсутствует, значит минералы урана распределены равномерно во всех кусках и радиометрическая сепарация при данной крупности материала не позволит произвести обогащение. Контрастность можно характеризовать показателем контрастности, который характеризует относительное отклонение ценного компонента в кусках руды от среднего содержания этого компонента, т.е.

Где М – показатель контрастности (0…2); α – среднее содержание ценного компонента в руде,%; у – среднее содержание ценного компонента в отдельных кусках пробы, % ; q – масса куска в общей массе пробы, доли ед.

Фотонейтронный метод сортировки основан на измерении интенсивности искусственного нейтронного излучения. Этот метод применяется при обогащении литиевых, бериллиевых, урановых, оловянных руд.

Обогащение по твердости применяется в процессе избирательного измельчения, которое основано на различной твердости минералов, входящих в состав руд, например, бериллиевых. При избирательном измельчении применяются мельницы с центральной разгрузкой, мелкие шары или галя, снижается частота вращения мельницы. При избирательном измельчении бериллиевых руд легко измельчающиеся частицы минералов вмещающих пород (тальк, слюды) отделяются от бериллийсодержащих минералов, имеющих твердость от 5,5 до 8,5, на грохотах или спиральных классификаторах. На второй стадии классификации применяются гидроциклоны, центрифуги или сепараторы (рис. 144).

Рис. 144. Схема обогащения берилливой руды методои избирательного измельчения

Обогащение бериллиевых руд избирательным измельчением применяется перед флотацией для удаления в хвосты хрупких минералов, обладающих низкой твердостью, содержание которых в рудах доходит до 70…80%. Степень обогащения берилла в этом случае составляет 2…4 (иногда 8…10) при извлечении его 70…90% в песковую фракцию.

Декрипитация – это свойство некоторых минералов растрескиваться и разрушаться при нагревании и последующем охлаждении. Этот процесс применяется, например, при обогащении литиевых руд, в которых литиевый минерал сподумен, находящийся в виде α – модификации, при нагревании до 950…1200˚С переходит в β – модификацию и разрушается. Минералы вмещающих пород при этом свою крупность не изменяют. Обжиг руды производят обычно в барабанных печах в течение 1…2 часов. Затем охлажденная руда измельчается в шаровой мельнице с резиновой футеровкой, а из мельницы направляется на грохочение или воздушную сепарацию для отделения мелкого порошкообразного сподуменового концентрата от крупных кусков породы (рис. 145).

Рис. 145. Схема обогащения сподуменовой руды

методом декрипитации

Растрескиваются при нагревании и превращаются в порошок такие минералы, как кианит, барит, флюорит, в то время как кварц практически не разрушается, поэтому при грохочении обожженной руды концентрируется в крупных классах.

Анализ кала методом обогащения в 10-15 раз лучше других методов справляется с поиском яиц гельминтов в фекалиях. Особенно это важно для ранней диагностики, потому что на начальной стадии гельминтоз лечить значительно легче. В профилактических целях сдавать кал методом обогащения рекомендуется всем, кто находится в группе риска.

Что представляет собой метод?

Виды анализа и методика проведения

Метод обогащения Калантарян

Метод обогащения по Шульману

Другие методы

Метод Бермана по обогащению кала при сдаче анализа на гельминты

Помогает выявить в кале личинки угрицы. Для эффективной диагностики лучше использовать еще теплый кал. В исследовании используется металлическая сетка, с мелкими делениями, помещенная в установленную на подставке стеклянную воронку. На дне воронки размещается резиновая трубочка с зажимом. В сетку помещают 5 грамм испражнений, поднимают и в воронку заливают теплую воду, пока низ сетки не погрузится в воду. Яйца гельминтов из-за термоактивности, сползаются к теплой воде и скапливаются на дне воронки. Спустя 4 часа, выпускают жидкость и помещают в центрифугу на 3 минуты. Оставшийся осадок подлежит микроскопическому изучению.

Метод обогащения по Красильникову

Для исследования применяют 1% раствор порошка для стирки «Лотос», в котором растворены каловые массы. При размешивании должна образоваться суспензия. 30 минут суспензия отстаивается, а затем помещается в центрифугу на 5 минут. В центрифуге яйца гельминтов очищаются от кала и выпадают в осадок, который исследуется под микроскопом.

Подготовка

  • За 2 дня до исследования не проводить очистительные клизмы, колоноскопию либо рентген желудка.
  • Накануне не употреблять жирную, копченую и жареную пищу.
  • В течение 3-х дней перед исследованием, при отсутствии противопоказаний, пропить желчегонное средство.
  • Вечером перед анализом не употреблять продукты, изменяющие цвет фекалий.
  • По возможности не принимать антибиотики, препараты железа и сорбенты.

Правила сбора биоматериала на анализ:

  • Перед сбором провести тщательное мытье внешних половых органов.
  • Заранее помочиться.
  • Сбор каловых масс осуществлять в специальный контейнер.
  • Пробы кала взять из 5-ти разных мест, в количестве 3-5 мл.
  • Следить, чтобы в анализ не попала урина и вода.
  • Образец для исследования должен попасть на диагностику в течение дня сбора.

Показания

Применение диагностической методики целесообразно при обнаружении следующих симптомов:

  • резкая смена стула (понос сменяется запором и наоборот);
  • зуд в области половых органов;
  • снижение аппетита;
  • повышенная раздражительность и ухудшение сна;
  • постоянное чувство голода;
  • одышка.

Копирование материалов сайта возможно без предварительного согласования в случае установки активной индексируемой ссылки на наш сайт.

Микроскопические методы диагностики гельминтозов, или зачем нужен анализ кала на яйца гельминтов?

Перед пациентами часто встают вопросы о том, как правильно сдать анализ кала на яйца глист, куда собрать материал для исследования, где и как его хранить, а также можно ли с уверенностью говорить об отсутствии гельминтов при отрицательном его результате. Однако, не все так просто.

Определить точное количество инфицированных в России практически невозможно, связанно это с самолечением, отсутствием обращений населения за медицинской помощью и массовой диспансеризации. Мнение экспертов сводится к тому, что в России заражены гельминтами более 20 миллионов человек.

Активное развитие туризма, а также усиление миграции приводят к тому, что число обнаруживаемых видов гельминтов на территории Российской Федерации прогрессивно увеличивается, при этом нередко можно встретить виды нехарактерные для территории нашей страны .

Выделяют три группы, которые отличаются друг от друга путем распространения и циклом развития.

Контактным гельминтам (имеют самый простой цикл развития) для перехода из одной стадии в другую не требуется промежуточный хозяин, они выделяют в окружающую среду практически зрелые или зрелые яйца, которые продолжают свое развитие, попав непосредственно на тело своей жертвы или на его одежду. Инвазивная форма - собственно яйца. Представителем данной группы является Enterobius vermicularis (острица) и др.

Геогельминты развиваются в земле до стадии личинки или зрелого яйца, в своем развитии не нуждаются в промежуточном хозяине, попадают в организм окончательного хозяина через загрязненные овощи, либо при контакте с зараженной землей. Представители данной группы: Trichocephalus trichiurus (власоглав), Ascaris lumbricoides (человеческая аскарида), Ancylostoma duodenale (анкилостома) и др.

Таблица сравнения источников заражения, локализации и методов лабораторной диагностики в зависимости от вида гельминта приведена ниже .

Таблица 1 - Методы лабораторной диагностики при разных видах глистных инвазий

1. Лабораторная диагностика гельминтозов

В настоящее время для диагностики гельминтозов применяются следующие методы: макроскопические и микроскопические (являются прямыми методами), серологические методы диагностики, ПЦР, УЗИ, рентгенологические методы и др.

1.1. Макроскопия

Макроскопический метод - это осмотр подготовленного материала невооруженным глазом или при помощи лупы. Применяется перед микроскопией полученного субстрата, предназначен для контроля за эффективностью проводимого лечения, а также для дифференциального диагноза при обнаружении частей цестод. Является достоверным при обнаружении члеников свиного и бычьего цепней, обрывков широкого лентеца и др.

1.2. Микроскопические методы исследования

Микроскопические методы исследования позволяют обнаружить яйца глистов (гельминтов) и личиночные формы в исходном субстрате. В качестве материала для микроскопии могут быть использованы кал, соскобы с перианальных складок, мокрота, кусочки мышечной ткани, содержимое желчного пузыря и др. Врач лабораторной диагностики в зависимости от предполагаемого диагноза выбирает один или несколько методов микроскопии.

Изучение кала под микроскопом с целью обнаружения яиц гельминтов называется копроовоскопией («копрос» - кал, «овум» - яйцо, «скопео» -смотрю). Изучение материала, полученного от больного, под микроскопом с целью выявления в нем личинок гельминтов называется ларвоскопией («ларва» - личинка).

1.3. Копроовоскопия (исследование кала на яйца глист)

В таблице 5 приведены различные модификации копроовоскопии. Метод Като-Миура (исследование толстого мазка фекалий под целлофаном) является самым простым, не требует значительных усилий и сложного оснащения лаборатории. Именно этот метод обычно используется при скрининговых анализах (например, при поступлении ребенка в детский сад, школу, ВУЗ, получении медицинской книжки декретированными слоями населения, оформлении на санаторно-курортное лечение или в стационар и так далее).

При подозрении на гельминтоз помимо метода Като-Миура врач-лаборант всегда использует так называемые методы обогащения (седиментации и флотации). Применение реагентов для осаждения или всплывания яиц гельминтов способствует их обнаружению даже при малой степени инвазии.

Таблица 2 - Методы овоскопии

Используются также количественные методы копроовоскопии. Данными методами определяют количество яиц глистов в 1 г. исследуемого материала, что позволяет приблизительно судить о степени инвазии гельминтами и эффективности проводимого лечения. Количественными могут быть метод толстого мазка под целлофаном по Като-Кац (измененный Като и Миура) и методы формалин-эфирного и уксусно-эфирного осаждения.

Информативность однократного исследования кала на яйца глист невелика, по разным оценкам около 30-50%. Этого вполне достаточно для выявления лиц с массивной инвазий при скрининге, однако порой недостаточно для постановки диагноза. Поэтому лечащий врач при подозрении на гельминтоз назначает как минимум 3 исследования с интервалом 7-10 дней между ними.

1.4. Копроларвоскопия (исследование фекалий на личинки гельминтов)

1.5. Иные способы овоскопии и ларвоскопии

Для обнаружения яиц остриц (Enterobius vermicularis) и бычьего цепня (Таеniarhynchus sagitanus) широко используется микроскопия соскобов с перианальной области. Сдать один из вариантов соскоба можно непосредственно в лаборатории или, получив необходимые для исследования пробирки и шпатели, произвести соскоб самостоятельно в домашних условиях с последующей сдачей исследуемого материла в лабораторию. О том, как правильно сдать соскоб на энтеробиоз, мы писали в соответствующей статье.

Эффективность всех методов соскоба с перианальных складок в диагностике гельминтозов примерно одинаковы, выбор метода зависит от наличия тех или иных средств для забора мазка.

Для диагностики гельминтозов также используют микроскопию содержимого двенадцатиперстной кишки. Желчь в лабораторию для исследования желательно доставить непосредственно после ее забора. Для обнаружения Strongyloides stercoralis (кишечной угрицы) используют исследование нативного (без окраски и обработки какими-либо реактивами) мазка.

Для обнаружения яиц трематод (Opisthorchus felineus, Clonorchis sinensis, Fasciola hepatica, Dicrocoelium lancealum) применяется метод центрифугирования желчи с последующей микроскопией.

Для обнаружения гельминтов (трихинелл) может использоваться биопсия поперечнополосатой мышечной ткани. Для изучения используют биоптат двуглавой или икроножной мышц, микроскопию желательно произвести непосредственно после забора материала. Применяется компресионная трихинеллоскопия и трихинеллоскопия методом искусственного переваривания в желудочном соке.

Для диагностики гельминтозов также возможно использование полимеразной цепной реакции, субстратом для которой являются кровь, моча, кал и др. Сложности в использовании этого метода связанны с малым количеством лабораторий, аккредитованных производить такие анализы. ПЦР позволяет обнаружить в исследуемом материале ДНК гельминта вне зависимости от того, жив он или нет.

Исходя из вышесказанного, мы видим, что для эффективной диагностики гельминтоза важно выбрать правильную методику, т.к. не всех гельминтов можно обнаружить при исследовании каловых масс.

2. Как правильно произвести сбор кала для анализа на яйца гельминтов?

Теперь разберем, как правильно сдавать анализ кала на яйца глист (на яйца гельминтов). Перед сдачей данного вида анализа какой-либо специальной подготовки не требуется. Для исследования не пригоден кал после очистительных клизм, ректальных свечей, применения слабительных средств.

Варианты приготовления наиболее простых растворов консерванта для хранения проб кала приведены в таблице ниже.

Дистиллированная вода 90,0 мл;

В данных консервантах полученный материал можно хранить до 2-3 недель. Для сбора подготовленного кала в консервант следует соблюдать соотношение: одна часть кала к трем частям выбранного консерванта.

3. Правила забора соскоба с перианальных складок

Если вам нужно сдать соскоб с перианальных складок, то это можно сделать в домашних условиях или непосредственно в поликлинике. Для получения материала в домашних условиях необходимо предварительно взять в поликлинике необходимые для этого приспособления (наборы, шпатели, пробирки), можно воспользоваться ватной палочкой, которая будет предварительно смочена в теплой воде или физрастворе (0,9% раствор NaCl).

Процедуру сбора материала проводят утром сразу после пробуждения, перед началом манипуляций не нужно проводить гигиену промежности, в туалет «по-большому» ходить тоже не нужно. Ватной палочкой протирают складки кожи вокруг анального отверстия. Для достоверности забор материала нужно производить сразу в нескольких местах. Готовый материал на ватной палочке помещают в контейнер или пробирку, плотно упаковывают. После сбора в течении двух часов материал для исследования следует доставить в лабораторию. Не забудьте подписать контейнер. Читать подробнее о модификациях классического соскоба на энтеробиоз можно здесь.

Результат исследования материала, как правило, будет готов в течении одного рабочего дня и уже на следующий день вы можете получить ответ, но некоторые лаборатории могут готовить результаты дольше.

Если в исследуемом материале не обнаружены яйца гельминтов или их личинки, то на бланке результата будет написано: «Яйца глист не обнаружены», в остальных случаях будет написано какой вид гельминтов обнаружен.

Таким образом, пациентам важно помнить:

  1. 1 Стандартный анализ кала на яйца глист неплохой метод массового обследования населения, в том числе декретированных групп.
  2. 2 Не каждый гельминтоз можно распознать с помощью стандартного исследования кала на яйца глист, в связи с этим при подозрении на глистные инвазии лучше всего обратиться к врачу и не заниматься самолечением.
  3. 3 Метод диагностики в каждом конкретном случае выбирает врач, основываясь на наличии тех или иных симптомов инвазии.
  4. 4 Результаты исследования кала на яйца глист напрямую зависят от правильности сбора материала. Если вы будете соблюдать вышеперечисленные требования, вероятность получить правильный результат будет гораздо выше.
  5. 5 Если вы получили ответ «Яйца глист не обнаружены», есть вероятность того, что результат ложноотрицательный. В этом случае лечащим врачом могут быть рекомендованы повторные исследования с интервалом в 7-14 дней, а также назначены другие диагностические мероприятия.

Дистиллированная вода 90,0 мл;

Дистиллированная вода 90,0 мл;

Обнаружение яиц гельминтов в кале методом обогащения

Кал суспензируют во флотационном растворе, имеющем большую относительную плотность, чем яйца гельминтов. При этом яйца гельминтов всплывают на поверхность, образовавшуюся пленку исследуют под микроскопом.

В качестве реактива используют флотационный раствор по Калантарян (1 кг нитрата натрия растворяют в 1 л воды, кипятят смесь до образования пленки и переливают без фильтрования в сухие бутылки; относительная плотность раствора 1,38) либо флотационный раствор по Брудастову - Красноносу (900 г нитрата натрия и 400 г нитрата калия растворяют при подогревании в 1 л воды; относительная плотность раствора 1,47-1,48).

Методика обнаружения яиц гельминтов в кале методом обогащения

В химических стаканах тщательно размешивают стеклянной палочкой 5-10 г кала и 100- 200 мл одного из флотационных растворов. Сразу же после окончания размешивания удаляют стеклянной палочкой всплывшие на поверхность крупные частицы. К поверхности солевого раствора прикладывают предметное стекло. Если между смесью и предметным стеклом остается пустое пространство, то добавляют солевой раствор до полного соприкосновения смеси с предметным стеклом.

Оставляют для отстаивания на 20-30 мин, после чего предметное стекло снимают, кладут под микроскоп пленкой кверху и просматривают без покровного стекла всю пленку, прилипшую к поверхности предметного стекла. Во избежание высыхания во время исследования пленку можно смешать с дву- мя-тремя каплями 50 % раствора глицерина.

Учитывают все обнаруженные в препарате яйца гельминтов.

Описанным методом можно выявить заражение аскаридами, власоглавами, анкилостомидами, тениидами, трематодами, лентецами и другими видами гельминтов.

Анализ кала на определение яиц различных гельминтов

Такое исследование позволяющее обнаружить присутствие глистов в человеческом организме

Когда сдавать?

Анализ кала на яйца различных гельминтов врач назначает в случае:

Показаниями к проведению исследования служат:

  • Неустойчивый стул или диарея неясного генеза.
  • Тошнота, рвота, боли в животе.
  • Заболевания пищеварительной системы.
  • Вульвовагинит, зуд в перианальной области.
  • Инфекции мочевыделительной системы.
  • Потеря веса, утомляемость, плохой аппетит.
  • Для детей ─ отставание в физическом и психоэмоциональном развитии.

Какова подготовка?

Особой подготовки не нужно. Перед исследованием пациенту советуют не принимать в пищу продукты, богатые клетчаткой, сорбенты, лекарства или продукты, влияющие на цвет стула. Если пациент принимал накануне антибиотики – имеет смысл сдавать кал при подозрении на гельминты спустя 7-10 дней после их отмены.

Копрологические исследования в диагностике гельминтозов имеют большое значение

Как правильно сдавать кал для исследования на простейших и яйца глистов?

  • Необходимо взять последнюю, а не первую порцию стула, лучше, если она будет жидкой.
  • Собирать материал в специальную стерильную посуду, предназначенную для копрологических исследований, приобретается в любой аптеке.
  • Доставить образец в лабораторию нужно в течение ближайших 2-3 часов, если это займет больше времени – использовать консерванты.

Как происходит анализ кала на яйца гельминтов в лаборатории?

Анализ кала на яйца глистов называется гельминтоовоскопией. К ней относят макроскопические и микроскопические методики, которые могут использоваться последовательно.

Макроскопия

При применении этого метода нет риска заражения персонала лаборатории

Среди этих методов исследования есть также способ отстаивания – когда фекалии смешивают с водой и отстаивают, спустя некоторое время верхнюю часть жидкости сливают, добавив новой до первоначального объема. Как только жидкость приобретает прозрачность - ее полностью удаляют, а осадок внимательно осматривают.

Получают мазок, смешивая кал с глицерином. При небольшом количестве яиц глистов в препарате они не определяются.

Если используется метод Като, делается мазок кала на предметное стекло, сверху накрывается целлофановой пленкой, смоченной в растворе Като, ─ содержит фенол, глицерин и малахитовый зеленый в необходимых пропорциях. Эта методика эффективнее изучения нативного материала.

Метод Шульмана иначе называется методом закручивания – материал аккуратно перемешивают, не прикасаясь к сосуду изнутри в смеси физиологического раствора и воды. Яйца гельминтов оказываются в центре. Далее стеклянной палочкой переносят небольшое количество жидкости на стекло для приготовления препарата.

Используют для определения энтеробиоза. Липкую ленту, наклеенную на предметное стекло, микроскопируют; материал собирают путем ее прикладывания к перианальным складкам.

Фекалии смешивают с водой, процеживают и отстаивают в течение 30 минут. Надосадочную жидкость сливают. До первоначального объема добавляют еще жидкости, материал встряхивают и снова отстаивают. Повторяют, пока верхний слой жидкости не станет прозрачным – из осадка готовят препарат и микроскопируют. Ищут в основном этим методом яйца трематод.

Общий анализ кала (копрограмма) включает в себя макроскопическое, химическое и микроскопическое исследование

Существуют методы обогащения, основанные на разнице физических свойств (удельный вес) яиц гельминтов и используемых флотирующих растворов. К ним относятся:

  • Формалин-эфирная или уксусная седиментация и ее модификации.

Суть методик седиментации заключается в осаждении яиц гельминтов в используемых химических реактивах ввиду их большего удельного веса.

Анализ кала на яйца гельминтов проводится в течение несколько дней. В специальные емкости с консервантом на основе формалина (может быть заменен на уксусную кислоту) добавляют образцы кала каждый день или с интервалом в несколько дней и хранят до нескольких недель. После центрифугирования исследуют осевшую часть под микроскопом.

Для поиска вегетативных форм или цист простейших добавляют раствор Люголя.

Раствор Люголя – препарат на основе молекулярного йода

Возможны модификации методов седиментации с использованием систем с готовыми реактивами.

Этими способами хорошо определяются яйца трематод.

  • Методы флотации (всплывания): Калантарян, Фюллеборна.

Роль флотационного раствора может выполнять насыщенный раствор поваренной соли – метод Фюллеборна (нематоды, лентец) или нитрата натрия – метод Калантарян (не всплывают яйца трематод). Может быть также использован нитрат аммония.

Основан на воздействии детергентов на исследуемый материал, при котором яйца гельминтов осаждаются. Детергент, которым служит стиральный порошок, полностью растворяют в материале. Производят микроскопию осадка после центрифугирования. Так можно определить все виды гельминтов.

Результат и его особенности

Сдавать анализ можно по назначению врача, получив направление при обращении в поликлинику, или по собственному желанию в частной лаборатории. Выбор метода исследования материала лаборантом будет основан на том, какое заболевание подозревает доктор, и яйца каких глистов нужно найти.

Микроскопическое исследование - метод более эффективый, чем нативный мазок

  • Субъективность.
  • Вероятность сдачи пациентом непоказательного кала на гельминты.
  • Слишком долгое время доставки в лабораторию.
  • Особенности гельминтов, такие, как например, феномен «прерывистого цистовыделения» у простейших.

Копирование материалов сайта запрещено! Допускается перепечатывание информации только при условии указания активной индексируемой ссылки на наш веб-сайт.

Методы обогащения

1) концентрация яиц на поверхности жидкости (методы флотации, всплывания);

2) концентрации яиц в осадке (методы осаждения, седиментации).

Метод Калантарян (с флотационным раствором):

Основан на том, что в жидкости с высокой относительной плотностью яйца гельминтов как более легкие всплывают на поверхность, где и концентрируются. Для этого используется раствор Калантрян (1 кг нитрата натрия растворяют в 1 л воды; смесь кипятят до образования пленки, остужают; относительная плотность раствора 1,38).

Оставляют для всплытия яиц на 20-30 мин, после чего предметное стекло снимают, кладут под микроскоп и просматривают без покровного стекла.

Метод Фюллеборна:

Метод Фюллеборна позволяет исследовать большое количество материала и широко используется. В небольшую баночку (обычно мазевую) помещают 5 г фекалий и тщательно размешивают с 20-кратным количеством насыщенного раствора хлорида натрия, добавляя его при помешивании небольшими порциями.

Так как яйца трематод, большинства цестод всплывают, нужно исследовать и осадок со дна баночки. Препараты из осадка мало прозрачны, поэтому для просветления можно добавить каплю глицерина.

Метод Красильникова (с применением детергентов):

Под действием поверхностно-активных веществ, входящих в состав детергентов (стиральных порошков), яйца гельминтов освобождаются от фекальных масс и концентрируются в осадке.

Метод закручивания (по Шульману):

Метод закручивания (по Шульману) очень прост, более эффективен, чем метод нативного мазка, однако ограничиваться им при исследовании на гельминты нельзя.

Он служит дополнением к методам концентрации яиц и личинок.

Метод Бермана:

Метод Бермана применяется для выявления личинок гельминтов (угрицы). Полученный от больного кал (лучше свежевыделенный) в количестве 5 г помещают на мелкую металлическую сетку (удобна цедилка для молока) в стеклянную воронку, закрепленную в штативе. На нижний конец воронки надевают резиновую трубку с зажимом (аппарат Бермана). Сетку (цедилку) приподнимают и в воронку наливают нагретую до 50 °С воду таким образом, чтобы нижняя часть сетки была погружена в воду.

2 Грохочением называют процесс разделения кусковых и зернистых материалов на продукты различной крупности, называемые классами, с помощью просеивающих поверхностей с калиброванными отверстиями (колосниковые решетки, листовые и проволочные решета).

В результате грохочения исходный материал разделяется на надрешетный (верхний) продукт, зерна (куски) которого больше размера отверстий просеивающей поверхности, и подрешетный (нижний продукт), зерна (куски) которого меньше размера отверстий просеивающей поверхности.

Дробление и измельчение – процесс разрушения полезных ископаемых под действием внешних сил до заданной крупности, требуемого гранулометрического состава или необходимой степени раскрытия материалов. При дроблении и измельчении нельзя допускать переизмельчения материалов, так как это ухудшает процесс обогащения полезного ископаемого.

Классификация – процесс разделения смеси минеральных зерен на классы различной крупности по скоростям их осаждения в водной или воздушной средах. Классификация осуществляется в специальных аппаратах, называемых классификаторами, если разделение происходит в водной среде (гидроклассификация), и воздушными сепараторами, если разделение происходит в воздушной среде.

Гравитационными процессами обогащения называют процессы обогащения, в которых разделение минеральных частиц, отличающихся плотностью, размером или формой, обусловлено различием в характере и скорости их движения в среде под действием силы тяжести и сил сопротивления.

К гравитационным процессам относятся отсадка, обогащение в тяжелых средах, концентрация на столах, обогащение в шлюзах, желобах, струйных концентраторах, конусных, винтовых и противоточных сепараторах, пневматическое обогащение.

Флотационные методы обогащения – процесс разделения тонкоизмельченных полезных ископаемых, осуществляемый в водной среде и основанный на различии их способности, естественной или искусственно создаваемой, смачиваться водой, что определяет избирательное прилипание частиц минералов к поверхности раздела двух фаз. Большую роль при флотации играют флотационные реагенты – вещества, позволяющие процессу идти без особых осложнений и ускоряющие сам процесс флотации, а так же выход концентрата.

Магнитные методы обогащения полезных ископаемых основаны на различии магнитных свойств разделяемых минералов. Разделение по магнитным свойствам осуществляется в магнитных полях.

При магнитном обогащении используются только неоднородные магнитные поля. Такие поля создаются соответствующей формой и расположением полюсов магнитной системы сепаратора. Таким образом магнитное обогащение осуществляется в специальных магнитных сепараторах.

Электрическим обогащением называется процесс разделения минералов в электрическом поле, основанный на различии их электрических свойств. Этими свойствами являются электропроводность, диэлектрическая проницаемость, трибоэлектрический эффект.

3. Ручная рудоразработка и породовыборка как способ обогащения основаны на использовании различия во внешних признаках разделяемых минералов – цвете, блеске, форме зерен. Из общей массы полезного ископаемого отбирают обычно тот материал, которого содержится меньше. В том случае, когда из полезного ископаемого отбирается ценный компонент, операция называется рудоразработкой, когда пустая порода – породовыработкой.

Декрипитация основана на способности отдельных минералов растрескиваться (разрушаться) при их нагревании и последующем быстром охлаждении.

Обогащение по трению, форме и упругости основано на использовании различий в скоростях движения разделяемых частиц по плоскости под действием сил тяжести. Основным параметром движения частиц по наклонной плоскости, является коэффициент трения, зависящий в основном от характера поверхности самих частиц и их формы.

Адиометрическая сортировка , основанная на различии радиоактивных свойств минералов или силе их излучения

Радиометрические методы обогащения основаны на различной способности минералов, испускать, отражать, или поглощать различные виды излучения.

К химическим методам обогащения относят процессы, связанные с химическими превращениями минералов (или только их поверхности) в другие химические соединения, в результате чего изменяются их свойства, или с переводом минералов из одного состояния в другое.

Химическое и бактериальное обогащение, основанное на спо­собности минералов, например сульфидов, окисляться и раство­ряться в сильно кислых растворах. При этом металлы переходят в раствор, из которого извлекаются различными химико-металлур­гическими методами. Присутствие в растворах некоторых типов бактерий, например тионовых, значительно интенсифицирует процесс растворения минералов.

В технологических схемах обогащения сложных комплексных руд часто используют одновременно два или три различных ме­тода обогащения, например: гравитационный и флотационный, гравитационный и магнитный и т. п. Применяются также комби­нированные методы обогащения в сочетании с гидрометаллурги­ческими.

Для успешного применения того или иного метода обогащения необходимо наличие у минералов достаточного различия тех свойств, которые используются в данном методе.

4. Процесс обогащения характеризуется следующими техноло­гическими показателями: содержанием металла в руде или продукте обогащения; выходом продукта; степенью сокращения и извлечением металла.

Содержание металла в руде или продукте обогащения - это отношение массы этого металла в руде или продукте обогащения к массе сухой руды или продукта, выраженное в процентах. Содержание металла принято обозначать греческими буквами α (в исходной руде), β (в концентрате) и θ (в хвостах). Содержание драгоценных металлов выражается обычно в единицах массы (г/т).

Выход продукта - отношение массы продукта, полученного -при обогащении, к массе переработанной исходной руды, выражен­ное в долях единицы или процентах. Выход концентрата (γ) показы­вает, какую долю от общего количества руды составляет концентрат.

Степень сокращения - величина, обозначающая во сколько раз выход полученного концентрата меньше количества перерабо­танной руды. Степень сокращения (К) выражает количество тонн; руды, которое нужно переработать, чтобы получить 1 т концентрата, и рассчитывается по формуле:

К= 100/ γ

Для руд цветных и редких металлов характерен малый выход концентрата и, следовательно, высокая степень сокращения. Выход концентрата определяется прямым взвешиванием или по данным химического анализа по формуле:

γ =(α - θ/β - θ)100,%.

Степень обогащения, или степень концентрации показывает, во сколько раз увеличилось содержание металла в кон­центрате по сравнению с содержанием металла в руде. При обогаще­нии бедных руд этот показатель может составлять 1000... 10000.

Извлечение металлаε - это отношение массы металла в кон­центрате к массе металла в исходной руде, выраженное в процентах

ε=γβ/α

Уравнение баланса металла

εα=γβ

связывает основные технологические показатели процесса и позволяет рассчитать степень извлечения металла в концентрат, которая, в свою очередь, показывает полноту перехода металла из руды в концентрат.

Выход продуктов обогащения можно определить по данным химических анализов продуктов. Если обозначить:- выход концентрата; - содержание металла в руде; - содержание металла в концентрате; - содержание металла в хвостах, а - извлечение металла в концентрат, то можно составить баланс металла по руде и продуктам обогащения, т. е. коли­чество металла в руде равно сумме его количеств в концентрате и хвостах

Здесь за 100 принят выход исходной руды в процентах. Отсюда выход концентрата

Извлечение металла в концентрат можно подсчитать по формуле

Если выход концентрата неизвестен, то

Например, при обогащении свинцовой руды, содержащей 2,5% свинца, получен концентрат с содержанием 55% свинца и хвосты, содержащие 0,25% свинца. Подставляя результаты химических анализов в приведенные выше формулы, получим:

выход концентрата

извлечение в концентрат

выход хвостов

степень обогащения:

Качественно-количественные показатели обогащения харак­теризуют техническое совершенство технологического процесса на фабрике.

Качество конечных продуктов обогащения должно соответство­вать требованиям, предъявляемым потребителями к их химическому составу. Требования к качеству концентратов называются кондициями и регламентируются ГОСТ, техническими условиями (ТУ) или временными нормами и разрабатываются с учетом технологии и экономики I переработки данного сырья и его свойств. Кондициями устанавливается минимально или максимально допустимое содержание различных со­ставных компонентов полезного ископаемого в конечных продуктах обогащения. Если качество продуктов соответствует кондициям, то эти продукты называются кондиционными.

Выводы:

Обогатительная фабрика является промежуточным звеном между рудником (шахтой) и металлургическим заводом. Руда различной крупности, поступающая с рудника, при переработке на обогатительной фабрике проходит различные процессы, которые по своему назначению можно разделить на подготовитель­ные, собственно обогатительные и вспомогательные.

Подготовительные процессы имеют целью под­готовить руду к обогащению. Подготовка включает прежде всего операции уменьшения размеров кусков руды - дробление и измельчение и связанную с ними классификацию руды на гро­хотах, в классификаторах и гидроциклонах. Конечная крупность измельчения определяется крупностью вкрапленности минералов, так как при измельчении не­обходимо максимально рас­крыть зерна ценных мине­ралов.

К собственно обо­гатительным про­цессам относятся про­цессы разделения руды и других продуктов по физи­ческим и физико-химическим свойствам минералов, входя­щих в их состав. К этим процессам относятся гравита­ционное обогащение, флота­ция, магнитная и электри­ческая сепарация и др.

Большинство процессов обогащения проводится в во­де и получаемые продукты содержат большое количе­ство ее. Поэтому возникает необходимость во вспомогательных процессах. К ним относится обезвоживание продуктов обогащения, включающее сгущение, фильтрование и сушку.

Кроме того, существуют так называемые специальные методы обогащения, к которым относятся:

рудоразработка, основанная на различии цвета и блеска отдель­ных минералов, их прозрачности или свечения;

адиометрическая сортировка, основанная на различии радиоактивных свойств минералов или силе их излучения;

обогащение по трению, основанное на различии коэффициен­тов трения минералов при движении их по плоскости;

химическое и бактериальное обогащение, основанное на спо­собности минералов, например, сульфидов, окисляться и раство­ряться в сильно кислых растворах.

Процесс обогащения характеризуется техноло­гическими показателями: содержанием металла в руде или продукте обогащения; выходом продукта; степенью сокращения и извлечением металла, что определяет основные характеристики процессов обогащения.

Контрольные вопросы:

1.
На какие разделы делят методы обогащения полезных ископаемых?

2.
Какие методы относятся к основным, а какие к вспомогательным методам обогащения.

3.
Какие методы обогащения Вам известны?

4.
Охарактеризуйте процессы грохочения, дробления, измельчения и классификации.

Понравилась статья? Поделитесь ей
Наверх